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Exercise 2 – 26.09.2024 – Solution   

Elasticity 
 

1. Stress tensors definitions 

 

Part 1: Qualitative cases  

Define the stress tensor for the following cases representative of the most common laboratory test conditions: 

 

 

     Uniaxial test                                          Isotropic test                                     Triaxial test 

𝝈𝒊𝒋 = [
0 0 0
0 0 0
0 0 𝜎1

]                                𝝈𝒊𝒋 = [
𝜎 0 0
0 𝜎 0
0 0 𝜎

]                             𝝈𝒊𝒋 = [
𝜎3 0 0
0 𝜎3 0
0 0 𝜎1

] 

 

                                      True triaxial test                                   Shear test 

                                 𝝈𝒊𝒋 = [
𝜎3 0 0
0 𝜎2 0
0 0 𝜎1

]                        𝝈𝒊𝒋 = [
0 0 0
0 0 𝜏
0 𝜏 0

] 
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Part 2: Computation example 

Consider an oedometric test where the sample is subjected to a vertical axial stress of 60 kPa. Given the 
properties of the tested material, calculate the different stress components of the stress tensor. (Use the 
elastic relationship between the stress and strain components) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General elastic relationship for normal strain-normal stress relationship:  

εx =
1

E
[σx − ν(σy + σz)] 

εy =
1

E
[σy − ν(σx + σz)] 

εz =
1

E
[σz − ν(σx + σy)] 

 

In oedometric conditions, εx = εy = εr = 0, σx = σy = σr, and σz = σv 

 

Substituting these conditions in the three equations above, we can obtain: 

𝜀𝑟 =
1

𝐸
[𝜎𝑟 − 𝜈(𝜎𝑟 + 𝜎𝑣)] = 0 

  

Which gives: 

𝜎𝑟 =
𝜈

1 − 𝜈
𝜎𝑣 = 15 𝑘𝑃𝑎 

 

Stress tensor: 

𝝈𝒊𝒋 = [
15 0 0
0 15 0
0 0 60

]  

 

 

 

 


a
= 60kPa 

Oedometric Test 


a
 

Young’s Modulus, E = 4 MPa 

Poisson’s ratio, ν = 0.2 sample 
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2. Parameter determination for an undrained elastic material 

 

A conventional undrained triaxial compression test, with the cell pressure σc, held constant, is carried out on 
a sample of stiff overconsolidated clay. The stress-strain relationship is found to be linear up to failure, so it 
is deduced that the clay behaves as an isotropic elastic material. The Biot coefficient can be considered to 
be 1 (due to incompressible grains). Consider a back pressure (initial pore water pressure) equal to 0. Tip: 
to compute G, consider the following equation ∆𝑞 = 2𝐺(∆𝜀11 − ∆𝜀33) obtained through the relationship 
between deviatoric stress and invariants (derivation annexed). 

 

Part 1 

After an axial strain Δεa = 0.8%, the corresponding deviatoric stress is q = Δq = 80kPa. 

Calculate the corresponding values of: 

• Mean total stress  ∆𝑝,  

• Mean effective stress  ∆𝑝′ 

• Pore water pressure  ∆𝑝𝑤 

• Radial effective stress  ∆𝜎′𝑟 

• Axial total stress  ∆𝜎𝑎 

• Axial effective stress  ∆𝜎′𝑎 

• Radial deformation  ∆𝜀𝑟 

• Undrained Young’s modulus  𝐸𝑢  

• Undrained shear modulus G 

 

After an axial strain Δεa = 0.8%, q = 80kPa. 

In the stress plane ( )'q p− (effective stress path - ESP) and ( )q p−  (Total stress path-TSP) the 

representation of loading path is the following 

 

 

 

 

 

 

 

 

Notice that in the fully drained case, the ESP would be identical to the TSP.  

The corresponding ESP is a straight vertical line in this case because the tested soil is assumed to be an 
ideal isotropic elastic material, i.e. its Skempton parameter 𝐴 = 1 3⁄ . 

∆𝑝′ = ∆𝑝 − ∆𝑝𝑤  with, 

pw 
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∆𝑝𝑤 = ∆𝜎3 +
1

3
(∆𝜎1 − ∆𝜎3)  →  ∆𝑝𝑤 =

1

3
(∆𝜎1 + 2∆𝜎3)  →  ∆𝑝𝑤 = ∆𝑝  

Here, the undrained condition implies: 

• Mean total stress: the variation in total stress is related to the variation in deviatoric stress and 

the CTC slope (3) in the ( )q p−  plane → ∆𝑝 =  
∆𝑞

3
= 26.7𝑘𝑃𝑎 

• Mean effective stress: as no volumetric deformations are experienced by the sample due to the 

undrained condition →
'

0 ' 0v

p
p

K



 = = → =  

• Pore water pressure: the difference between the total stress and the effective stress being the 
pore pressure (Terzaghi’s definition of effective stress) → ∆𝑝𝑤 = ∆𝑝 − ∆𝑝′ = ∆𝑝 = 26.7𝑘𝑃𝑎 

• Radial effective stress: the definition of the effective stress is applicable to all stresses     

 → ∆𝜎𝑟
′ = ∆𝜎𝑟 − ∆𝑝𝑤 = 0 − 26.7 = −26.7𝑘𝑃𝑎 

• Axial total stress: using the definition of the deviatoric stress   
→ ∆𝑞 = ∆𝜎𝑎 − ∆𝜎𝑟 → ∆𝜎𝑎 = ∆𝑞 + 0 = 80𝑘𝑃𝑎, 

• Axial effective stress: → ∆𝜎𝑎
′ = ∆𝜎𝑎 − ∆𝑝𝑤 = 53.3𝑘𝑃𝑎 

• Radial deformation: using the definition of the volumetric strain:  

→ ∆𝜀𝑣 = 0 = ∆𝜀𝑎 + 2∆𝜀𝑟 → ∆𝜀𝑟 = −
0.008

2
= −0.004 

•  Undrained Young’s modulus → 410u

a

q
E kPa




= =


 

• Undrained shear modulus    
→The deviatoric stress q is related to the invariant I2D by the shear modulus G, according to the 
following equation: 

𝑞 = 2√3𝐺√𝐼2𝐷   

 
→This equation is obtained from the relationship between deviatoric stress q and the second 
invariant J2D of the deviatoric stress tensor sij  

𝐽2𝐷 =
1

6
[(𝜎1 − 𝜎3)2 + (𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2] =

1

6
[2(𝜎1 − 𝜎3)2] =

1

3
[(𝜎𝑎 − 𝜎𝑟)2] 

q = √3J2D 

 
→Considering the elastic constitutive relationship between deviatoric stress tensor sij and 
deviatoric strain tensor eij 
𝑠𝑖𝑗 = 2𝐺𝑒𝑖𝑗 

 
→J2D can be written as 

√J2D = 2G√I2D 

where, in triaxial conditions, I2D is second invariant of the deviatoric strain tensor eij  

I2D =
1

6
[(𝜀1 − 𝜀3)2 + (𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2] = ⋯ =

1

3
(ε𝑎 − εr)2 

 
→Finally, we can write 𝑞 = 2𝐺(𝜀11 − 𝜀33), and ∆𝑞 = 2𝐺(∆𝜀11 − ∆𝜀33) 
→Along path AC: 2 ( ) 3333a r a rG G kPa    − =  − → =  
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Part 2 

At this time, the axial stress and cell pressure are kept constant, and the sample is allowed to drain so that 
the pore pressures dissipate and the sample undergoes a volumetric strain Δεv = 0.25%  

Calculate the values of  ∆𝑝𝑤, ∆𝜎′𝑎, ∆𝜎′𝑟 , ∆𝑞, ∆𝑝′, ∆𝜀𝑎, ∆𝜀𝑟  

Calculate the value of bulk modulus K. 

 

Drainage under constant axial stress and cell; the path corresponds to ‘BC’ in the figure. 

Volumetric strain Δεv = 0.25%. 

• Pore pressure dissipate, so at the end of the drainage process it has to be equal to zero  
→∆𝑝𝑤 = 0 − 26.7 = −26.7𝑘𝑃𝑎 

• ∆𝜎𝑎
′ = ∆𝜎𝑎 − ∆𝑝𝑤 = 0 − (−26.7) = 26.7𝑘𝑃𝑎 

• ∆𝜎𝑟
′ = ∆𝜎𝑟 − ∆𝑝𝑤 = 0 − (−26.7) = 26.7𝑘𝑃𝑎 

• 0a rq   =  − = kPa  

• ∆𝑝′ =
∆𝜎𝑎

′ +2∆𝜎𝑟
′

3
= 26.7𝑘𝑃𝑎 

• Along path BC: ∆𝜀𝑣 =
1

𝐾
∆𝑝′ → 𝐾 = 10680𝑘𝑃𝑎 

Note that pore pressure variation produces the same effective stress in both axial and radial directions; 
as a consequence, only variation of mean effective stress is observed while deviatoric stress remains 
constant. 

• Using again the following equation 𝑞 = 2𝐺(𝜀𝑎 − 𝜀𝑟), and considering that along the path BC 

0q = , we can write:  

∆σa − ∆σr = 2G(∆εa − ∆εr) 
0 = 2G(∆εa − ∆εr) 

then  ∆εa = ∆εr 

Furthermore, we can also write: 

0 = 2G(∆εa − ∆εr) = 2G (∆εa −
∆εv − ∆εa

2
) = G(3∆εa − ∆εv) 

where ∆𝜀𝑣 = ∆𝜀𝑎 + 2∆𝜀𝑟 

 

→∆𝜀𝑎 =
1

3
∆𝜀𝑣 = 0.00083 

→∆𝜀𝑟 = ∆𝜀𝑎 = 0.00083 

 

 


