CIVIL ENGINEERING SECTION — MASTER SEMESTER 1/ 3 — 2024-2025

GEOMECHANICS
DR. A. FERRARI AND PROF. L. LALOUI
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Exercise 2 — 26.09.2024 — Solution

Elasticity
1. Stress tensors definitions

Part 1: Qualitative cases

Define the stress tensor for the following cases representative of the most common laboratory test conditions:
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Part 2: Computation example

Consider an oedometric test where the sample is subjected to a vertical axial stress of 60 kPa. Given the
properties of the tested material, calculate the different stress components of the stress tensor. (Use the
elastic relationship between the stress and strain components)

Oedometric Test

C = 60kPa

.

d

Young’s Modulus, E =4 MPa
Poisson’s ratio, v=0.2

General elastic relationship for normal strain-normal stress relationship:
1
& = E [O’X —v(oy + GZ)]
1
g, = E [Gy —v(oy, + GZ)]
1
g, = E [O'Z —v(ox + O'y)]
In oedometric conditions, ex= &y = &= 0, ox= oy= oy, and 0,= oy
Substituting these conditions in the three equations above, we can obtain:

- [O-r - V(O-r + O-v)] =0

Sr:E

Which gives:

v
0r=1_v0,,=15kPa

Stress tensor:
15 0 0

0 0 60
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2. Parameter determination for an undrained elastic material

A conventional undrained triaxial compression test, with the cell pressure o, held constant, is carried out on
a sample of stiff overconsolidated clay. The stress-strain relationship is found to be linear up to failure, so it
is deduced that the clay behaves as an isotropic elastic material. The Biot coefficient can be considered to
be 1 (due to incompressible grains). Consider a back pressure (initial pore water pressure) equal to 0. Tip:
to compute G, consider the following equation Aq = 2G (A&, — Aes3) obtained through the relationship
between deviatoric stress and invariants (derivation annexed).

Part 1
After an axial strain A¢a = 0.8%, the corresponding deviatoric stress is q = Aq = 80kPa.
Calculate the corresponding values of:

e Mean total stress Ap,

e Mean effective stress Ap’

o Pore water pressure Ap,,

e Radial effective stress Ad’,

o Axial total stress Aag,

o Axial effective stress Ad’,

¢ Radial deformation Ae,

e Undrained Young's modulus E,

e Undrained shear modulus G

After an axial strain Ae; = 0.8%, g = 80kPa.

In the stress plane (q-— p')(effective stress path - ESP) and (q-p) (Total stress path-TSP) the
representation of loading path is the following

q A B ‘ pr C
TSP
ESP 3

A > p,p’

Notice that in the fully drained case, the ESP would be identical to the TSP.

The corresponding ESP is a straight vertical line in this case because the tested soil is assumed to be an
ideal isotropic elastic material, i.e. its Skempton parameter A = 1/3.

Ap' = Ap — Ap,, with,
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Ap,, = Aos + é(Aal —Aoz) 2 Ap, = é(Aa1 + 2A03) 2> Ap,, = Ap
Here, the undrained condition implies:

e Mean total stress: the variation in total stress is related to the variation in deviatoric stress and
the CTC slope (3) inthe (q—p) plane > Ap = A?q = 26.7kPa

e Mean effective stress: as no volumetric deformations are experienced by the sample due to the

undrained condition = Ag, =O=A?IO —Ap'=0

o Pore water pressure: the difference between the total stress and the effective stress being the
pore pressure (Terzaghi's definition of effective stress) > Ap,, = Ap — Ap' = Ap = 26.7kPa

o Radial effective stress: the definition of the effective stress is applicable to all stresses
> Ao} = Ao, — Ap,, = 0 — 26.7 = —26.7kPa

o Axial total stress: using the definition of the deviatoric stress
- Aq = Ao, — Ao, = Ao, = Aq + 0 = 80kPa,

e Axial effective stress: > Ao, = Ao, — Ap,, = 53.3kPa

¢ Radial deformation: using the definition of the volumetric strain:

9 ASU =0= Aga + ZAET - Agr = —@ = —0.004

e Undrained Young’s modulus - E, _ A9 _1g'kpa

Ag,

e Undrained shear modulus
—>The deviatoric stress q is related to the invariant |2p by the shear modulus G, according to the
following equation:

q =2V3G\/Ip

—>This equation is obtained from the relationship between deviatoric stress q and the second
invariant Jop of the deviatoric stress tensor s;;

1
Jop = 5 [(01 — 03)% + (07 — 0,)% + (0, — 03)*] =

q =+/3l2p

[(Ua - O-r)z]

Wl =

[2(07 — 0'3)2] =

N =

—>Considering the elastic constitutive relationship between deviatoric stress tensor sjj and
deviatoric strain tensor e;j
Sij = ZGeij

- Jop can be written as

VIzp = 2Gy/Tzp

where, in triaxial conditions, l2p is second invariant of the deviatoric strain tensor e;

1 1
Ip = 6 [(e1 —&3)* + (61 — &) + (e — €3)*] = - = §(Sa —£)?

—>Finally, we can write ¢ = 2G (g1 — €33), and Aq = 2G (Ag;, — Aes3)
—>Along path AC: Ao, — Ao, =2G(Ag, — A¢,) — G =3333kPa
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Part 2

At this time, the axial stress and cell pressure are kept constant, and the sample is allowed to drain so that
the pore pressures dissipate and the sample undergoes a volumetric strain Ag, = 0.25%

Calculate the values of Ap,,,Ad’,, Ac’,, Aq, Ap', Ag,, Acs,
Calculate the value of bulk modulus K.

Drainage under constant axial stress and cell; the path corresponds to ‘BC’ in the figure.
Volumetric strain Agy = 0.25%.

e Pore pressure dissipate, so at the end of the drainage process it has to be equal to zero
2>Ap,, = 0—26.7 = —26.7kPa

o Ac, =Ag, —Ap, = 0—(=26.7) = 26.7kPa
e Aoy, =Ag, — Ap,, = 0—(—26.7) = 26.7kPa
e Ag=Ac,—Ac, =0kPa

Acl+2A0;.
3

e Along path BC: A, = ~Ap’ - K = 10680kPa

o Ap' = = 26.7kPa

Note that pore pressure variation produces the same effective stress in both axial and radial directions;
as a consequence, only variation of mean effective stress is observed while deviatoric stress remains
constant.

e Using again the following equation g = 2G (e, — &,), and considering that along the path BC
Agq =0, we can write:

Ao, — Ao, = 2G(Ae, — Ag,)
0 = 2G(Ag, — Ag,)

then Ag, = Ae,
Furthermore, we can also write:

Ag, — Ag,
0 = 2G(Ae, — Ag,) = 2G (Asa - T) = G(3Ag, — Asg,)

where Ag,, = Ag, + 2Ae,

>Aée, = Ag, = 0.00083
>Ae, = Ae, = 0.00083
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